"Anti-fatigue" control for over-actuated bionic arm with muscle force constraints

نویسندگان

  • William Haiwei Dong
  • Setareh Yazdkhasti
  • Nadia Figueroa
  • Abdulmotaleb El-Saddik
چکیده

In this paper, we propose an “anti-fatigue” control method for bionic actuated systems. Specifically, the proposed method is illustrated on an over-actuated bionic arm. Our control method consists of two steps. In the first step, a set of linear equations is derived by connecting the acceleration description in both joint and muscle space. The pseudo inverse solution to these equations provides an initial optimal muscle force distribution. As a second step, we derive a gradient direction for muscle force redistribution. This allows the muscles to satisfy force constraints and generate an even distribution of forces throughout all the muscles (i.e. towards "anti-fatigue"). The overall proposed method is tested for a bending-stretching movement. We used two models (bionic arm with 6 and 10 muscles) to verify the method. The force distribution analysis verifies the “anti-fatigue” property of the computed muscle force. The efficiency comparison shows that the computational time does not increase significantly with the increase of muscle number. The tracking error statistics of the two models show the validity of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Local Heating and Cooling of Arm on Maximal Isometric Force Generated by the Elbow Flexor Musculature in Male Subjects

Objectives: It is well known that neuromuscular function is temperature sensitive. Changing of muscle temperature can effect voluntary muscle contraction. The aim of this study was to investigate the effects of cooling and heating on maximal isometric force generated by the elbow flexor musculature in male subjects. Methods: Forty five healthy males encompassing 3 groups participated in the ...

متن کامل

Practical Gripper Performance for Intelligent Active Force Control of a Robot Arm Actuated by Pneumatic Artificial Muscles

In this paper, an intelligent Active Force Control (AFC) of a single-link Pneumatic Artificial Muscle (PAM) actuated robot arm employing Fuzzy Logic (FL) element has been applied and tested through an experimental study. The robot arm is desired to move along a one radian circular trajectory as a joint angle tracking control in the wake of the introduced disturbances. To demonstrate the practic...

متن کامل

Experimental Implementation of Active Force Control and Iterative Learning Technique to A Two-link Arm Driven by Penumatic Artificial Muscles

This paper highlights the practical viability and feasibility of an active force control (AFC) technique incorporating an iterative learning (IL) algorithm known as AFCAIL applied to a two-link planar arm actuated by a pair of pneumatic artificial muscles (PAM). The robust performance of a robot control scheme is vital to ensure that the robot accomplishes its tasks desirably in a constraint en...

متن کامل

Optimizing control motion of a human arm With PSO-PID controller

Functional electrical stimulation (FES) is the most commonly used system for restoring function after spinal cord injury (SCI). In this study, we used a model consists of a joint, two links with one degree of freedom, and two muscles as flexor and extensor of the joint, which simulated in MATLAB using SimMechanics and Simulink Toolboxes. The muscle model is based on Zajac musculotendon actuator...

متن کامل

Control Motion of A Human Arm: A Simulation Study

This article presents a simulation study to control a human arm motion using muscle excitations as inputs. Our simulation implements the musculoskeletal model Arm26 provided in OpenSim which has 2 DOF and 6 muscles as actuators. First, in order to drive the limbs’ motion to track a desired trajectory, we propose an Adaptive Sliding Mode Controller (ASMC) to compute the necessary driving moments...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013